HEAVY RAINFALL EVENTS PRECEDING THE ARRIVAL OF TROPICAL CYCLONES

Matthew R. Cote, Lance F. Bosart, and Daniel Keyser

Department of Earth and Atmospheric Sciences University at Albany/SUNY, Albany, NY

Michael L. Jurewicz, Sr.

National Weather Service Forecast Office Binghamton, NY

CSTAR II Grant NA04NWS4680005

Spring CSTAR II Meeting 4 May 2007

- Nothing unusual about rainfall distribution at first glance
- Heaviest in SC and VA just left of the TC track
- A few scattered areas of heavy rain further north

0000 UTC 040830 WSI NOWRAD Radar Mosaic

0000 UTC 040831 WSI NOWRAD Radar Mosaic

0000 UTC 040831 WSI NOWRAD Radar Mosaic

How can we capture the downstream rainfall?

DATA SOURCES

- NCDC and WSI NOWRAD radar imagery
- NHC best-track data
- NPVU QPE and NWS rainfall products
- NCEP/NARR gridded datasets
- NCEP/NCAR Global Reanalysis for compositing
- DATSAV and COADS surface data

IDENTIFYING PREs (1998–2006)

- Coherent area of rain displaced poleward of TC
- Maximum rainfall rates exceeded 100 mm in 24
- Moisture transport from TC toward PRE

IDENTIFYING PREs (1998–2006)

- Coherent area of rain displaced poleward of TC
- Maximum rainfall rates exceeded 100 mm in 24 h
- Moisture transport from TC toward PRE

PAST RESEARCH ON PRE WITH AGNES (1972)

Bosart and Carr (1978) conceptual model of antecedent rainfall

PRE STATISTICS

Separation Distance

1086 ± 482 km Median: 935 km

Bosart and Carr (1978) conceptual model of antecedent rainfall

PRE STATISTICS

Separation Distance

1086 ± 482 km Median: 935 km

Event Duration

14 ± 7 h Median: 12 h

Bosart and Carr (1978) conceptual model of antecedent rainfall

PRE STATISTICS

Bosart and Carr (1978) conceptual model of antecedent rainfall

Separation Distance

1086 ± 482 km Median: 935 km

Event Duration

14 ± 7 h Median: 12 h

Time Lag

45 ± 29 h Median: 36 h

Type of PRE (Number in category)	24-h rainfall rate statistics (mm)			Mean PRE	
	Mean	Std. deviation	Maximum	speed (m s⁻¹)	
Left of Track (22)	185	70	340	10.7	
Along Track (8)	245	100	410	12.9	
Right of Track (7)	260	80	410	5.7	
GREATEST RAINFALL SLOWEST MOVEMENT					

Type of PRE (Number in category)	24-h rainfall rate statistics (mm)			Mean PRE
	Mean	Std. deviation	Maximum	speed (m s⁻¹)
Left of Track (22)	185	70	340	10.7
Along Track (8)	245	100	410	12.9
Right of Track (7)	260	80	410	5.7

HIGH RAINFALL

PREs MOVE TWICE AS FAST

SEPARATION BY TC TRACK SIMILARITY

SOUTHEAST RECURVATURES

ATLANTIC RECURVATURES

SE RECURVATURE PRE COMPOSITE TIME OF PRE INITIATION

700 hPa Ht (dam) and UVM (µb s⁻¹)

- Significant midlevel trough with weak UVM well poleward of TC
- Deep meridional flow transports tropical moisture up East Coast

925 hPa Ht (dam), θ_{e} (K), and 200 hPa wind speeds (m s⁻¹)

- PRE forms:
 - in right-entrance region of intensifying upper-level jet
 - on western edge of $\boldsymbol{\theta}_{e}$ ridge

GASTON (2004): SYNOPTIC FEATURES

al200 UTC 040830 925 hPa Ht (dam), θ_e (K), 200 hPa wind speeds (m s⁻¹)

1200 UTC 040830 700 hPa Ht (dam) WSI NOWRAD image

and

GASTON (2004): SYNOPTIC FEATURES

0000 UTC 040831 700 hPa Ht (dam) WSI NOWRAD image a000 UTC 040831 925 hPa Ht (dam), θ_e (K), 200 hPa wind speeds (m s⁻¹)

and

GASTON (2004) MESOSCALE FEATURES

Sfc moisture flux convergence (10⁻⁷ s⁻¹), mixing ratio (g kg⁻¹), and wind barbs (kt)

Sfc frontogenesis (K (100 km)⁻¹ (3 h)⁻¹, θ (K), and streamlines

- Saturated up through 600 hPa
- LL northerlies indicate BUF is behind the boundary
- 850-200 hPa speed shear ~65 kt
- K-Index and SWI conducive to heavy convective rainfall

Sfc moisture flux convergence (10⁻⁷ s⁻¹), mixing ratio (g kg⁻¹), and wind barbs (kt)

PRE 3 affects region several hours later

- Located behind θ_{e} boundary
- 850-200 hPa speed shear ~50 kt
- K-Index still conducive to heavy convective rainfall

- Far eastern edge of PRE 3 affects region ~2 h later
- Located ahead of $\boldsymbol{\theta}_{_{\boldsymbol{e}}}$ boundary
- LL veering winds with surface-based CAPE

CONCLUSIONS

 ~ 1/3 of all US landfalling TCs produce at least one PRE, but landfall is not necessary

- PREs form on the order of 1000 km away from their parent TCs and about 1-2 days in advance
- LOT PREs are most common, but AT and ROT PREs produce the highest rain rates
- TCs recurving over the Southeast and along the East Coast have the greatest likelihood of producing PREs

CONCLUSIONS

PREs generally form:

- When persistent, deep meridional flow transports tropical air far from the TC

- In favored upslope regions or along synoptic/mesoscale boundaries:

 Ahead of the boundary, where surface-based convection is favored

 Immediately behind the boundary, where elevated convection is favored

CONCLUSIONS

PREs generally form:

- Along and just west of a low-level $\theta_{\rm e}$ ridge, near the strongest gradient
- Near a midlevel jet-entrance region confluence zone
- Under favorable upper-level jet dynamics

TECHNOLOGY TRANSFER

GETTING THE WORD OUT

- Research presented at BGM Spring Workshop
 27 March 2007
- Other conference presentations
- Possible NWS teletraining
- Eventual journal publication

TECHNOLOGY TRANSFER

INCORPORATING INTO OPERATIONS

- 24-h track/precip technique for capturing rainfall downstream of TC
- TC track climatological maps
- Statistically modified Bosart and Carr (1978) conceptual model
- Ingredients-based methodology
- Construction of an "all-in-one" conceptual model

QUESTIONS? COMMENTS?

mcote@atmos.albany.edu

2100 UTC 060830 700 hPa Ht (dam) WSI NOWRAD image

2**៘**UTC 060830 925 hPa Ht (dam), θ_e(K), 200 hPa wind speed (m s⁻¹)

Ernesto (2006)

- NW/SE oriented trough well to the northeast
- Closed midlevel low NW and flat ridge east of TC
- Broad upper-level jet to the north
- On western edge of θ_{e} ridge

0900 UTC 050830 700 hPa Ht (dam) WSI NOWRAD image

0900dUTC 050830 925 hPa Ht (dam), θ_{e} (K), 200 hPa wind speed (m s⁻¹)

Katrina (2005)

- Large midlevel low NNE and ridge SE of TC
- PREs a bit downstream of where model predicts
- Jet dynamics only partially explain the PREs
- No prominent low-level $\boldsymbol{\theta}_{e}$ ridge or gradient near PRE

NULL CASE

0000 UTC 050707 700 hPa Ht (dam) WSI NOWRAD image 0@00dUTC 050707 925 hPa Ht (dam), θ_e(K), 200 hPa wind speed (m s⁻¹)

Cindy (2005)

- WNW flow at midlevels
- Scattered rainfall over
 New England not related to
 Cindy
- Massive low-level ridge poleward of TC
- No rainfall near low-level $\boldsymbol{\theta}_{e}$ ridge

CENTRAL GULF LANDFALLS

<u>GASTON (2004)</u> MESOSCALE DETAILS FROM ADDITIONAL TIMES

Sfc moisture flux convergence (10⁻⁷ s⁻¹), mixing ratio (g kg⁻¹), and wind barbs (kt)

Sfc frontogenesis (K (100 km)⁻¹ (3 h)⁻¹, θ (K), and streamlines

Sfc moisture flux convergence (10⁻⁷ s⁻¹), mixing ratio (g kg⁻¹), and wind barbs (kt)

Sfc frontogenesis (K (100 km)⁻¹ (3 h)⁻¹, θ (K), and streamlines

Sfc moisture flux convergence (10-7 s⁻¹), mixing ratio (g kg⁻¹), and wind barbs (kt)

Sfc frontogenesis (K (100 km)⁻¹ (3 h)⁻¹, θ (K), and streamlines

Sfc moisture flux convergence (10⁻⁷ s⁻¹), mixing ratio (g kg⁻¹), and wind barbs (kt)

Sfc frontogenesis (K (100 km)⁻¹ (3 h)⁻¹, θ (K), and streamlines