

Flash Flood Warning Performance Improvement

Michael L. Jurewicz, Sr. NOAA/NWS, Binghamton, NY WFO GYX Spring Workshop May 7, 2012

Outline

- Motivation / Statistics
- Specific Topics
 - A Sampling of Past and Present WFO BGM Research on Flooding
 - "Three Strikes and You're Out"
 - Flash Flood Potential Index (FFPI)
 - Maximum Potential PWAT

Flash Flood Warning Performance Improvement *Motivation*

ER FFW Statistics

Ē

ER FFW Lead Time Issues

Ē

Things to Consider

- Although overall trends in LT have been good through the last 10 years:
 - Zero LT Warnings are still running 15-25%
 - About 1 out of every 5 FFW's
 - Simply in "reactive mode"
- > POD has remained about steady, however:
 - FAR's have steadily increased
 - As a result, CSI's have lowered over time
- What to do ?

Flash Flood Warning Performance Improvement

>>> WFO BGM "Three Burst" Study (a.k.a "Three Strikes and You're Out")

Significant FF vs. Nuisance Runoff

- An established "tool of the trade" for warning operations is comparing Gridded FFG to accumulated / radar estimated rainfall
 - Other tools / strategies to help us better differentiate?

Looking Back to Go Forward

- Previous research by Davis (2000) and Kelsch (2001)
 - Frequency of short-duration bursts vs. FFG / cumulative rainfall ratios
 - Main suggestion: Monitoring instantaneous rate trends may be at least as important as using FFG (especially in fast responding watersheds)

Database

- Selected 10 major flash flood events from NY / PA since 2002
 - Combined costs:
 - 11 fatalities
 - At least hundreds of millions of dollars in damages
 - Other numbers:
 - Warm season cases (8):
 - Averaged 6-7" rainfall / 3 hours
 - Maximum: 10+" on 6/19/07 (Colchester, NY)
 - Cool season cases (2):
 - Averaged 2-3" rainfall / 2 hours

Testing the Hypothesis / Methodology

- For our selected list of events, we evaluated the following data:
 - KBGM WSR 88–D
 - 0.5 Degree Base / Composite reflectivity
 - 1-hour, 3-hour, and storm total rainfall
 - Calculated 1-hour instantaneous rates
 - 1-hour and 3-hour FFG (MARFC)
 - Unavailable for one of the cases
- Graphically compared the following
 - Instantaneous rates over time
 - Ratios of accumulated rainfall to FFG

Rainfall Rates and FFMP

😪 KBGM FFMP Threat BASIN Table 🗧 🗶						
File Link to Frame Refresh D2D Ending Time:					00 Sun Apr 06	
Ag Lvis: County	🗖 Display	Rate TI	te Thresh Type: precip		Sources: DHR	
Raimfal	er 📃 Only	🗧 Only Basins in Parent		Click: Up/Down		
rates Worst Case Display						
Area Id	Rate	Precip	FFG	Ratio	Diff	
tracked	0.01	0.08	1.14	7	-1.06	
everv	0.00	0.08	1.06	7	-0.98	
1789	0.00	0.06	1.06	6	-1.00	
volume	0.00	0.07	1.02	6	-0.96	
scañ ⁸⁹	0.01	0.06	0.94	6	-0.89	
800	0.00	0.07	1.22	6	-1.15	
basin by	0.00	0.05	0.94	5	-0.89	
hasim	0.00	0.06	1.10	5	-1.05	
2895	0.00	0.05	0.94	5	-0.90	
	0.00	0.05	0.94	5	-0.90	
2903	0.00	0.05	0.94	5	-0.90	

Threat Basin Table

Basin Trend Graphs

Heavy Rain Bursts

- In the majority of cases (8 / 10), initial reports of major flooding coincided with the *third burst* of high intensity rainfall
 - Specific rainfall rates were relative (air mass / season dependent)

Rates vs. Times Examples

Colchester: Rate vs. Time

January 2010 (Broome/Susq FF): Rate vs. Time

June 19, 2007

January 25, 2010

FFW vs. Actual Flooding (LT Issues)

Colchester: Rate vs. Time

January 2010 (Broome/Susq FF): Rate vs. Time

June 19, 2007

January 25, 2010

Rainfall to FFG Ratios

- At times when major flooding was reported / observed, mean accumulated rainfall to FFG ratios were:
 - Warm season
 - 1-hour: 1.45; 3-hour: 1.95
 - Significant flooding normally occurred well after FFG values were exceeded
 - Cool season
 - 1-hour: 0.75; 3-hour: 0.9
 - Significant flooding occurred prior to FFG values being reached
 - Impervious / frozen surface ?

Warm Season Case

22z, 13 June – 03z, 14 June 2003 (Rate vs. Time)

22z, 13 June – 03z, 14 June 2003 (Rainfall / FFG Ratio vs. Time)

Cool Season Case

11z - 17z, 25 January 2010 (Rate vs. Time)

11z - 17z, 25 January 2010 (Rainfall / FFG Ratio vs. Time)

Potential Uses / Caveats

- Timing bursts of high intensity rainfall show promise as a flash flood predictor
 - At least for higher-end events
 - Opportunities to combine this kind of diagnosis with analyses of FFG
 - Sooner recognition of major flooding / better LT ?
- Rainfall amounts tend to "rocket" past FFG values for significant warm season flash floods
 - Possible assistance in warning decision making
 - Lower FAR's / better CSI's ?

- However, the BGM CWA features fairly homogenous soil types / similar land uses most areas
- No accounting was made for antecedent conditions

Flash Flood Warning Performance Improvement *FFPI*

FFPI Refresher

- Index is a mathematical average of geophysical characteristics of a basin
 - Slope
 - Land Use/Land Cover
 - Soil Type
 - Forest Density
- Index gradient is from 1 (Low) to 10 (High)
 - Basin's potential to respond to heavy rain events leading to flash flooding.
- Antecedent conditions not accounted for

DEM Slope Grid

Land Use/Cover Grid

The Data

Four geographic data sets were utilized.

- Slope derived from the USGS DEM
- MLRC Land Use/Land Cover Grid
- AVHRR Forest Density Grid

Forest Density STATSGO Soil Type Classification

FFPI mapped to FFMP Basins

- Note the good fit to empirical understanding developed over the years
- Also some new realizations, especially the low potential areas
- Differentiates the "best of the worst" basins in an area generally known for high flash flood potential

Flash Flood Potential Index (FFPI)

Current/Future Enhancements

- Resolution increased from 90 m to 30 m
- Readily displayable in AWIPS
- Further tweaks / mathematical re-indexing is ongoing
 - Based on FF reports / case studies
- For further information:

James.Brewster@noaa.gov (WFO BGM SSH)

Flash Flood Warning Performance Improvement

Maximum Potential PWAT

Maximum Potential PWAT (Rationale)

- Assessing flash flood potential can be especially difficult in rapidly changing situations
 - Severe threat evolving to a flash flood threat
- Precipitable water (PWAT) can be a fickle parameter
 - Values can change substantially / quickly as NWP convective schemes trigger
 - Another way to view this field ?

BUFKIT Comparisons

Standard Profile

Max Potential PWAT (saturated along WB temp (light blue trace))

Potential Uses / Future Work

- Maximum potential PWAT (Arnott, 2008, <u>http://www.erh.noaa.gov/bgm/research/</u> <u>2008/MaxPwat_Abstract.pdf</u>) may provide a useful way to assess flash flood potential ahead of time, especially given the expectation of training / repeat cells
 - May have the advantage of being a more stable value
- Needs an automated application to run (not yet developed)
- Local testing planned at WFO BGM

References

Arnott, J., 2008: Maximum Potential Precipitable Water – A More Robust Moisture Variable? <http://www.erh.noaa.gov/bgm/research/ 2008/MaxPwat_Abstract.pdf>.

Davis, R. S., 2000: Detecting flash flood on small urban watersheds. Preprints, 15th Conference on Hydrology, Amer. Meteor. Soc., 233–236.

Kelsch, M., 2001: The relationship between intense, short-duration precipitation and flash floods. Preprints, Symposium on Precipitation Extremes: Prediction, Impacts, and Responses, Amer. Meteor. Soc., 124–128.

The End !!

Questions ??