Uses of Dual-Pol Radar for Tornadoes: More Than Just Debris

Dual-Pol Refresher and Previous Research

Christina Crowe Journeyman Forecaster WFO Huntsville, AL

Dual-Pol Variable Refresher: What do they mean?

Horizontal Reflectivity: Z_H

Dual-Pol Variables:

Z_{DR} arc, Dynamics & Thermodynamics

• Z_{DR} arc

(e.g. Romine et al 2008, Kumjian & Ryzhkov 2008)

- In tornadic and non-tornadic storms
- Lowest 1-2km of storm
- right side of cell, along Z_H gradient
- values often >5 dB (tornadic >6 dB)
- sign of locations of weaker vertical velocities just outside of core
- Landfalling TC Outbreak case had arcs, values > 6 dB, and spatial separation of dual-pol fields (Crowe et al 2010)

Evidence of size sorting, microphysics, and thermodynamics of RFD (evaporation)

Total size sorting results in \rightarrow enhanced Z_{DR} along right flank & increased K_{DP} in forward flank (left of Z_{DR})

Larger K_{DP} , Smaller Z_{DR} = smaller raindrops, larger liquid water content Smaller K_{DP} , Larger Z_{DR} = larger raindrops, smaller liquid water content

Dual-Pol Variables:

SRH estimation & Radar Type Caveats

Z_{DR} arc and SRH:

(Kumjian & Ryzhkov 2009 modeling study)

- o Inc. directional shear ⇔ more substantial arc
 - Stronger wind shear = greater size sorting = increased mag of Z_{DR}
- Localized Low Level SRH estimated combining
 - Surface Wind Vector
 - Storm Motion Vector
 - Estimated SR winds in layer immediately above the arc (perpendicular to major axis of arc)

Notes for C- (research to follow) vs. S-band:

- $K_{DP} \sim 1$ / radar wavelength (C-band = 2x higher values than S-band)
- **Z**_{DR} depends on differential resonance response at different wavelengths
 - No significant differences at lower values (~3dB)
 - Higher values (>6dB) more rare at S-band
 - Hail signature of $Z_{DR} \sim 0$ dB more apparent in S-band (water coated hail = Mie issues at C-band \rightarrow large Z_{DR} values)

Warnings: 39 Tornadoes: 4 (EF1-0)

Warnings: 92 Tornadoes: 40 (EF0-5)

Widespread Supercells **POD:** 100% **FAR:** 88% **LEAD:** 14

All Modes **POD:** 92% **FAR:** 49% **LEAD:** 17

Data from: ARMOR Dual-Polarimetric Radar (C-band)

9 Storms In Range 8 Storms In Range

Results - October 26

Tornadic Cell

Non-Tornadic Cell

Tornadic Cell

Non-Tornadic Cell

What about QLCS?

 $\underline{Z_{H}}$ > 35dBZ = yellow > 45 dBZ = red

 $\underline{Z}_{\underline{DR}}$ > 3dB = red

 \geq 6dB = white

<u>K</u>_{DP}

- $> 1.0^{\circ} \text{ km}^{-1} = \text{blue/grey}$
- > 2.0° km⁻¹ = blue
- > 3.0 °km⁻¹ = green

What have we learned?

- Dual-pol fields show different behavior in tornadic vs. non-tornadic storms
- Indicate different dynamics & thermodynamics of the nearstorm environment
 - \circ Near storm SRH increases = enhanced Z_{DR} arc
 - Enhanced size sorting leads to separation of dual pol fields
 - Microphysics RFD thermodynamics and 'Goldilocks syndrome'

KDP vs. ZDR separation most useful

- Non-tornadic periods had higher Z_{DR} values back into the 'hook'
- Non-tornadic periods had greater overlap of fields
- $\circ~$ Tornadic periods had better spatial separation of fields and more apparent $\rm Z_{DR}~$ arcs (more substantial arcs on April 27th)
- QLCS cases also show some separation of fields

Threshold of 6dB in arc does not work in all cases

- Worked better in higher shear case days
- S-band also reacts differently than C-band (need for addtl. research)
- Use 'normalized' Z_{DR} for threshold in different env./storm types? (Kumjian 2010)

Potential utilization in QLCS cases

Thank You

- Crowe, C.C., W.A. Petersen, L.D. Carey, and D.J. Cecil, 2010: A dual-polarization investigation of tornado-warned cells associated with Hurricane Rita (2005).
 Electronic J. Operational Meteor., EJ4. (http://www.nwas.org/ej/pdf/2010-EJ4.pdf)
- Crowe, C.C., C.J. Schultz, M. Kumjian, L.D. Carey, and W.A. Petersen, 2012: Use of dual-polarization signatures in diagnosing tornadic potential. Electronic J. Operational Meteor., EJ5. (<u>http://www.nwas.org/ej/pdf/2012-EJ5.pdf</u>)

Check the references sections of these papers for other great dual-pol resources!

• • •

Questions? Feel free to contact me at Christina.Crowe@noaa.gov WFO Huntsville, AL