

Motivation

Although many components of lake-effect snow forecasting have been well studied over the years, one that has not has been the inland extent of lake-effect snow bands.

Accurate forecasts of the inland penetration of lake-effect snow bands can be a critical determination in NWS Watch/Warning/Advisory decisions.

This visible satellite image (1601 UTC, 27 Nov 2010) depicts an example of a significant Lake Ontario single band, with upwind moisture connections to Georgian Bay. It is just these types of events where determining the inland extent of significant lake-effect snow is very important for NWS Watch/Warning/Advisory operations.

Inland Extent of Lake-Effect Snow

Joe Villani and Michael L. Jurewicz, Sr. **NOAA/National Weather Service** Albany, NY and Binghamton, NY Joe.Villani@noaa.gov and Michael.Jurewicz@noaa.gov

Methodology

A number of lake-effect snow events were studied across Central and Eastern NY, during the winters from 2006-2010. The goal was to identify the most strongly correlated atmospheric parameters to significant inland extent. As the above graphic portrays, our method (for each event at 6 hourly intervals) was to pick a number of data points (utilizing initialized model fields from the 12-km North American Mesoscale Model (NAM), as well as actual sounding data), both within and just on the periphery of well defined Lake Ontario single bands.

As seen below, a distance measuring tool (outlined by the white polyline) was used to determine the exact inland extent (in nmi), at these same 6 hourly intervals.

Select Values for the Following:

Lake Temperature (C)
Capping Inversion (Km)
Multi-Lake Connection
Model
Location

5		
3		
3		
No		
nam		
uca	 	

Inland Extent = 89.52

Lake Effect Snow no

Based on the above cited correlations, a forecast tool was developed to give NWS personnel an estimate (in nmi from the shoreline) of inland extent, utilizing both real-time model and forecaster input.

Results

Top 3 Most Strongly Correlated Parameters to Inland Extent:

The existence of a Multi-Lake **Connection (MLC – Strong Positive Correlation)** Lake / Air Temperature Differentials in the 850-700 mb Layer (Strong Negative **Correlation**) **Speed Shear in the 0-1 km Layer** (Strong Positive Correlation)

Forecast Application Tool

	Results		
		1.64	
	Suface Temp (C) = Mixed Layer Wind Speed (kts) =	4.13	
•	Mixed Layer Wind Direction (deg) =	321.84	
•	850 Temp Difference (C) =	2.96	
-	700 Temp Difference (C) =	8.06	
	0-1 Km Wind Speed Shear (kts) =	13.33	
	0-3 Km Directional Wind Shear (Deg) =	13.67	
	Model Time 11/17/12 0000Z		
-			
kely			