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Motivation

* Severe weather impacts on the Northeast
— Densely populated, major metropolitan areas

Poﬂp\ulation density (2000 census)

o
d)

4

people per square km
J<1

=1-5

Bl5-10

I 10 - 50

[ 50 - 100

[ 100 - 500

I 500 - 1000

I 1000 +

: P
4 DRene 5
5 L
2 3
)
-
X

Hurlbut and Cohen (2014)



Motivation

* |nterstate 95 corridor from Boston through
Washington D.C. = most densely populated
region in U.S.
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Motivation

Severe weather impacts on the aviation

— 8 of 25 busiest airports in the U.S. are found north
of D.C. and east of Pittsburg, PA

Weather caused 63.88% of all
National Airspace System delays
between 2003-2015
(www.transtats.bts.gov).
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Motivation

e Severe weather impacts on the aviation

— 8 of 25 busiest airports in the U.S. are found north
of D.C. and east of Pittsburg, PA
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Motivation

The Northeast provides a challenging forecast
environment
— Complex terrain, lake-water boundaries
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BACKGROUND LITERATURE



Background

 Monthly climatology of severe reports in the
Northeast (1999-2009)
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Background

 Monthly climatology of severe reports in the
Northeast (1999-2009)
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Background

* Recent research suggests MUCAPE is weaker
for coastal Northeast severe linear events than
non-severe MCSs in the Great Plains

Coastal Northeast

MUCAPE (a)
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Background

* Recent research suggests MUCAPE is weaker
for coastal Northeast severe linear events than
non-severe MCSs in the Great Plains

Great Plains Coastal Northeast
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Background

* Recent research suggests MUCAPE is weaker
for coastal Northeast severe linear events than
non-severe MCSs in the Great Plains

Non-Severe MCS Coastal Northeast
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Background

e Northeast CAPE

— Hurlbut and Cohen (2014) used 6-h proximity

soundings to evaluate Northeast severe weather
environments 3@
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Background

* Northeast CAPE
— Majority of events have MLCAPE < 1000 J kg1
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Background

Northeast deep-layer shear

— Bulk wind shear (0—6 km) medians for all events
hovers between ~13-16 m s™1(~25-31 kt)
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Background

Northeast deep-layer shear

— Bulk wind shear (0—6 km) medians for all events

hovers between ~13-16 m s™1 (~25-31 kt)
.

s AR\
/ \

n
o

[y
R,
4y

|

[ary
N
(13}

[y
o

0-6-km bulk shear {m %)

e
N

Hurlbut and Cohen (2014) [6-h proximity soundings]



Background

e Hitchens and
Brooks (2012)
verified SPC day-1
slight-risk
convective outlooks
over CONUS

— Found increased
forecast
performance with
time

Probability of Detection (POD)
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Background

* Found increasing
severe report areal
coverage with time . AN |

-
* Slight-risk outlook »\./\/. L&M_
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Research Goals

* Evaluate slight-risk forecast
performance over the Northeast

* Build database of events with poor
forecast skill

* Analyze environments conducive to
poor forecast skill



Research Goals

* Evaluate slight-risk outlook
performance over the Northeast



Methodology: Game Plan

e Establish Northeast domain to evaluate forecast
skill

* Plot slight-risk convective outlook contours over
the domain

e Evaluate outlooks with valid storm reports and
compare to CONUS verification

— Similar verification methodology to Hitchens
and Brooks (2012)

e Mod and high contours within slight contours
were included (i.e. everywhere inside the slight was
treated the same)




Mod and High Outlooks Included
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Northeast Domain

Northeast
Region
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Algorithm Example
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Algorithm Example

Slight Risk: @ o @ o e -

- 40 km
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Algorithm Example
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Methodology: Evaluation

Contingency Observed Y | Observed N
Table

a
POD =
atc Forecast (Y) Correct Hit False Alarm
0<POD<1, bestscore: POD =1, (A) (B)
best score # perfect forecast
Forecast (N) Miss (C) Correct null
b D
FAR = &
a+b obs. evts
0 < FAR < 1, best score: FAR = 0, /
best score # perfect forecast
a
1S =CSI =
a+b+c

0<TS<1, bestscore: TS =1, best
score = perfect forecast

\
fcst. evis



SLIGHT-RISK SKILL SCORES



Northeast and CONUS:
TS

Threat Score
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Northeast and CONUS:
Slight Risk Frequency
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Research Goals

* Build database of events with poor
forecast skill



Database Criteria

 Forinclusion in the 1980-2013 database,
an event must meet at least 1 of 2
criteria:

— Have a slight risk contour within the NE
domain

— Have a sufficiently high impact to warrant
inclusion

* How do we define “high impact”?
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High-Impact Database: Quick
Stats

* Event days = 1503
* Slight-risk days = 1300

* High-impact events without slight-risk = 203



TYPES OF LOW-PREDICTABILITY
EVENTS



Type 1 (Low POD) Example

Reports captured =0 Reports missed = 200
POD=0 FAR = N/A TS=0

SPC Day 1 Outlook and Prelim. Reports Valigg '
1200 UTC 08/19/2011 to 1200 UTC 08/20/20
L 1 .

HAIL 85

81 @ <Zin
4 & 2in+

WIND 180

175 @ 50kt+
5 W 6B5kt+

TORN 2

SPC DAY 1 CATEGORICAL QUTLOOK 2 @ Tom.

fa TOTAL 267

ISSUED: 05252 ) .
V WALID: 18/12002-2012002 Categorical Outlook Legend:
Preliminary Subjective Verification
NOAANWSE Storm Prediction Center, Norman, Okiahoma TSTM SLGT MoT - HIGH -




Types of Low Predictability Events

* Typel
® LOW — High impact

— Lowest 25t percentile

PO D POD score

* Expected little severe wx

e Ends up over-performing




Type 2 (High FAR) Example

Reports captured = 2 Reports missed =0
POD=1 FAR = .986 TS =.014

SPC Day 1 Outlook and Prelim. Reports Valigg
1200 UTC 05/24/2011 to 1200 UTC 05/25/20
L : .

HAIL 210

167 @ <2in
43 A 2in+

WIND 323

265 @ SOkt+
L 58 W 65KE+
S MO W[ TORN 57

57 @ Tom.

SPC DAY 1 CATEGORICAL QUTLOOK

I55UED: 05592 TOTAL 590

-~

WALID: 24012002-25M1 2002

Preliminary Subjective Verification
NOAANWSE Storm Prediction Center, Norman, Okiahoma TSTM SLGT MDT - HIGH -

Categoarical Outlook Legend:




Types of Low Predictability Events

 Expected to perform well

e Ends up under-performing

Iyrl\—h

— Highest 25

Py H |gh percentile FA area

— Lowest 25th

FAR percentile severe

report area




Types of Low Predictability Events

* Typel
® LOW — High impact

— Lowest 25t percentile

P O D POD score

* Type?2
— Highest 25 percentile

.ngh FA area

— Lowest 25t percentile

FA R severe report area

®No events meet both requirements



COLLECT EVENTS WITH GOOD
FORECAST SKILL FOR COMPARISON



Type of High Predictability Events

e Good Event

® H igh — High impact

— Highest 25 percentile

Event TS threat score

 Expected to perform well

 Performs well (perhaps too well)




HIGH-IMPACT, LOW-PREDICTIVE
SKILL CLIMATOLOGY



Annual Frequency

Annual Occurence
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Monthly Frequency
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Monthly Frequency

Percent Monthly Occurrence
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Research Goals

 Evaluate environments conducive to
poor forecast skill



EVENT-CENTERED COMPOSITES



Event Centering Technique

* 0.5° NCEP Climate Forecast System Reanalysis
(CFSR)

— Chose morning (1200 UTC) for synoptic analysis,
afternoon (1800 UTC) for severe weather
parameter analysis

* Type 1 and Good forecast events centered on
the point of maximum report density

 Composited April-September to capture majority
(93%) of high-impact events

* Type 2 events centered at centroid of the
slight-risk region



Event Climatology

Events by 500 hPa Flow Direction
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Event Climatology

Percentage of High-Impact Events Classified as Type 1 and Good Events
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Event Climatology

Percentage of High-Impact Events Classified as Type 1 and Good Events

N NW W SW S

ETypel EGood

Numbers indicate raw number of events. Green line indicates
expected value based on methodology.




Event Climatology

Percentage of High-Impact Events Classified as Type 1 and Good Events
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SEVERE WEATHER PARAMETER
ANALYSIS

(MUCAPE & DEEP-LAYER SHEAR)
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MUCAPE-Shear Phase Space

Type 1 and Good Forecast Events
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MUCAPE (J kg™*)

MUCAPE-Shear Phase Space

Type 1 and Good Forecast Events
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MUCAPE-Shear Phase Space

MUCAPE and 1000-500-hPa Shear

HSLC HSHC LSLC LSHC
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Threat Scores of High-Impact
Events

0.25
0.20
o 0.15
S
010 -
0.05 -
0.00 -
<31
1000-500-hPa Shear (kt)
Average threat scores of high-impact events occurring under low
(< 31 kt) and high (= 31 kt) 1000-500-hPa shear. Whiskers are
confidence intervals at the 99% level.




EXAMPLE CASE



18 August 2009 Severe Wind Event
(LSHC)

* Type 1 under-predicted storm

e SPCissued 5% wind outlook for Northeast

HES U SGRE E  nyorman, Okishoma
g




Synoptic Overview

250 hPa 1600 UTC 18 August 2009
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250-hPa geopotential height (dam, black contours()), 250-hPa
winds (knots, shaded and barbed), divergence (x 10> s, red
contours)
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Synoptic Overview

90°W

85°W 0°W 75° 70°W
500-hPa geopotential%eight (dam, b?agﬁ contours), 500-hPa
winds (knots, barbed), 500-hPa relative vorticity (x10™ s,
shaded)




Synoptic Overview

SBCAPE & shear 1600 UTC 18 August 2009

85°W 80°W 75°W 70°W
700-500-hPa lapse rate (K/km, black contours), 1000-500-hPa
shear (knots, barbed), surface-based CAPE(J/kg, shaded)
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MLCAPE:
MLCIN:

2192 J kg
-233 J kg!

6-km shear: 12 kt

DCAPE:

1294 J kg!

100

200

300

500
700k

1000f=

850}

=020 —10 0 10
WAL - 090818/1200
OBSERVED Sounding



Downdraft CAPE (DCAPE) (J/kg)
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Radar 1600 UTC 18 Aug
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Radar 1630 UTC 18 Aug
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Radar 2000 UTC 18 Aug
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Radar 2030 UTC 18 Aug
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Radar 2230 UTC 18 Aug
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Radar 0200 UTC 19 Aug

e
g of DuPage Heatherl
MExXRAD ZKM MOSATIC 19 AUG 09 ©O1:54




% f DuPage HWeatherk
HEXRAD EHM MOSHEIC 19 Ala 09 2 0O2: 26




Radar 0300 UTC 19 Aug
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Surface parcel: T=35°Cand T, =17 °C
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Radar 0000 UTC 19 Aug
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Radar 0000 UTC 19 Aug
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Case Summary

* Low Shear High CAPE (LSHC) event.
— Weak synoptically forced environment

— Orography and lake boundaries critical in convective
initiation
— Convective initiation environment differed from

environment to the east where most severe reports
occurred.

* Type 1 LSHC cases often feature storms propagating

into environments with higher PBL heights and
greater DCAPE

* In the absence of strong low-to-mid level flow and
large vertical wind shear, large DCAPE and high PBL
heights likely contribute to the severe wind threat



General Summary

* Low-predictive skill climatology results:
— Northeast has better threat scores than CONUS

— Peak in JJA for low-POD events, little yearly variation

* Most common under westerly, southwesterly, and northwesterly 500-
hPa flow regimes

— High-FAR events not as common in recent years

 Composite results:
— Deep-layer shear a significant predictive skill discriminator

— Northerly, northwesterly, and southerly flow regimes have
lowest skill

— Synoptic setup similar between good and low-POD cases but key
features (trough, baroclinicity, etc.) stronger in good cases

e (Case study results:

— Low-POD, low-shear events often propagate into higher-PBL,
higher-DCAPE environments

— High shear, low CAPE low-POD events often exhibit insolation-
driven, high-PBL instability
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Northwesterly Flow Low-POD Event Conceptual Model
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