

Abstract

The public does not understand how the 100-year storm can happen 5 times in 25 years when we call them 100-year storms. They don't understand that 100-year storms can have different intensities and total rainfall over different durations
Why do we label these events based on their recurrence interval? Other natural disasters are rated in other ways. Earthquakes use the Richter scale, tornadoes use the Fujita scale, and hurricanes use the Saffir-Simpson scale. They use a simple scale to rate the event's severity, not it's rarity.
The public understands the ratings for these weather events. We need to change how we communicate with the public about hese major rain events. I propose the industry adopt a new standard of identifying and classifying rainstorms from a recurrence interval to one that the public can understand

Probabilities and statistics

The problem with using recurrence intervals is they are based on probability and statistics, and the public does not understand this.
The chance of the 100-year event occurring once in 100 years is $1-(1-p) 100=1-(0.99) 100=1-0.366=63.4 \%$
But the public thinks it should occur once every 100 years
The odds of the 100-year event occurring 5 times in 25 years are $n!^{*} \mathrm{p} \mathrm{Y}^{*}(1-\mathrm{p})(n-\mathrm{Y}) /(\mathrm{Y}!)^{*}(n-\mathrm{Y})!=25!^{*} 0.015^{*}(0.99) 20 / 5!^{*} 20!$ $=1$ in 4.4 million
Seems pretty rare; so the public asks, "How could this occur?" Why do we define rain events based on their rarity? Wouldn't it be better to define them based on their severity?

Redefining Extreme Rainfall Events to Avoid Public Confusion Moving from a Rarity Based Rating to a Severity Based Scale

By Thomas M. Grisa, P.E. (Brookfield, WI)

Recent history of flooding in Brookfield

August 6, 1986-6.8" in 24 hours June 20-21, 1997-6" in 26 hours August 6, 1998-11.35" in 8 hours June $7-8,2008-5.8^{\prime \prime}$ in 24 hours June 19, 2009-4.8+" in 3 hours
Five 100-year storms or larger in 25 years!

How can they all be 100 -year storms

Public does not understand this because
Everyone of the storms was different
They each had different effects on flooding
They occurred more than once every 100 years

There must be a better way Think, think, think - Inspiration!

Not all storms within a recurrence interval are the same. Need to adjust ratings to reflect duration and intensity of rain events

$$
G_{A D J}=G \times(D A F) \times(I A F)
$$

Where:
G = the Category of storm
DAF = Duration adjustment factor:
Total rain for X duration storm
Total rain for 24 duration storm
IAF = Intensity adjustment factor:
Total rainfall per X-year storm
Total rainfall for 100-year storm

Rainfall - duration table for SE Wisconsin

Storm Duration	$2-$ year	$5-$ year	$10-$ year	$25-$ year	$50-$ year	$100-$ year
1 hour	1.31	1.60	1.84	2.20	2.50	2.82
2 hour	1.54	1.93	2.23	2.73	3.16	3.64
3 hour	1.68	2.07	2.40	2.93	3.39	3.89
6 hour	1.95	2.40	2.79	3.44	4.03	4.70
12 hour	2.24	2.74	3.17	3.89	4.53	5.25
24 hour	2.57	3.14	3.62	4.41	5.11	5.88
2 day	3.04	3.71	4.20	4.94	5.53	6.13
3 day	3.29	3.94	4.40	5.09	5.63	6.17
5 day	3.77	4.42	4.84	5.43	5.86	6.26
10 day	4.68	5.42	5.89	6.55	7.03	7.46
Rainfall data is based on Milwaukee rainfall datata for the 108-year period						

of 1891 to 1998. Source: Rodgers, Potter, and SEWRPC

Earthquakes, tornadoes and hurricanes

Each of these natural disasters use a scale to rate the severity of the storm, not the rarity. The public understands this. The bigger the number the bigger the storm. They have no expectation tha two major storms could not happen in a row like they do with large rain events (100-year storms).

Fully adjusted G-scale ratings (rounded for ease in reporting)

Storm Duration	$2-$ year	$5-$ year	$10-$ year	$25-$ year	$50-$ year	$100-$ year
1 hour	0	1	1	2	3	4
2 hour	1	1	2	3	4	5
3 hour	1	1	2	3	4	5
6 hour	1	1	2	3	4	6
12 hour	1	2	2	4	5	7
24 hour	1	2	3	4	6	8
2 day	1	2	3	5	6	8
3 day	1	3	4	5	7	8
5 day	2	3	4	6	7	8
10 day	2	4	6	7	9	10

100-Year storm shown graphically

This graph is based on probability of the storm occurring. There can be hundreds of 100 -year storms that all look very different from each other, causing confusion with the public.

A new rating system (scale) proposed

Develop a formula to convert recurrence intervals to a scale that the public understands.

$$
\mathrm{RI}=2^{(\mathrm{G}-1)}
$$

Where: $\mathrm{RI}=$ Recurrence Interval of the rain event $\mathrm{G}=$ the Category of storm

Example: For the 100 -year storm: $100=2^{(\mathrm{G}-1)}$ Solve for G, G=7.64
100 -year storm is reported as a G-7.64 storm

Recent history of flooding in Brookfield
August 6, 1986: 6.8" in 24 hours = G-8+
June 20-21, 1997: $6^{\prime \prime}$ in 26 hours = G-8
August 6, 1998: 11.35" in 8 hours = >G-10
June 7 - 8, 2008: 5.8 " in 24 hours = G-8
June 19, 2009: 4.8+" in 3 hours = G-6

Advantages of this new scale

No implication of rarity
Public understands these ratings
The bigger the number the bigger the storm
Preserves and builds upon existing science and data Avoids confusion by the public regarding 100 -year storm
and 100-year floodplain and their relationships
Provides a more appropriate scaling factor

